Very Low Flux Infrared Detectors for Planet Finder Requirements

Presented to:

NGST Annual Technology Challenge Review #1

NASA/Goddard Space Flight Center

July 7-10, 1997

H. H. Hogue, S. Chern, and J. E. Huffman*

Research and Technology Center
*Lawrence Semiconductor Research Laboratory

Sponsored by NASA/Jet Propulsion Laboratory under Contract NAS7-918

Introduction

- Detector Needs for Planet Finder (PF) and NGST
 - Dark Current and Read Noise Reduction
 - Companion presentation "Boeing Mid-IR BIB FPA Technology"
- Blocked Impurity Band (BIB) Technology Overview
- PF Detector Development Task at Boeing RTC
 - Approaches
 - Progress

Space-Based Origins Missions for Mid-IR BIB FPA's

NGST can benefit from detector development already being directed toward Planet Finder requirements

BOEING

Planet Finder Mission

- Direct detection of habitable planets from space
- IR photometry for size and temperature
- Orbits by direct imaging
- Planet spectra in
 7 µm to 17 µm band

water 7 µm habitability
ozone 9.5 µm photochemistry

- CO₂ 15 µm atmosphere

IR Focal Plane is a Core PF Technology

Planet Finder Detector Needs

Parameter

Array size

Pixel size

Dark current

Read noise

Background

Signal level

Integration time

~10x50

~(100 µm)²

< 2 e/s (goal < 1 e/s)

< 8 e (goal <1 e)

600 ph/m²/s (at aperture)

2.3 ph/m²/s (at aperture)

Temperature 5-10 K (highest possible)

TBD (> 10 s)

Low sensitivity to ionizing radiation damage

PF Dark current and read noise more stringent than NGST **BIB FPA development should benefit NGST**

NGST

512x512

~(27 µm)²

goal < 1 e/s

goal < 15 e/read

Impurity Band Conduction (IBC) Material

- Single-crystal Group IV semiconductor
- Heavily doped with Group V (donors) or Group III (acceptors)
- Si:As, Si:Sb, Si:Ga, Si:P, Ge:Ga, Ge:B
- · Below carrier freeze-out, conduction through impurity states

* Lanthanide	
* Lanthanide Series	

+ Actinide Series

•	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Si:As Blocked Impurity Band Detector

- Impurity band conduction blocked by undoped silicon layer
- Generated carriers swept out and detected:
 - Optical up to ~28 µm for Si:As (photoresponse)
 - Thermal ~ $\exp(-E_{act}/kT)$, E_{act} ~22 meV (dark current)

90EING

BIB Detector Currents

BIB Detector Model

- One-dimensional finite-element model
- Inputs:
 - BIB layer structure with donor and acceptor profiles
 - Operating conditions
- Outputs:
 - Infrared transmission, absorption, reflection
 - Electric field profile for given bias
 - Optical and thermal generation for given operating temperature
 - Impact ionization multiplication and approximate noise contribution
 - Other phenomena
- Implemented as a spreadsheet calculation

Planet Finder Task at Boeing RTC

- "BIB Detector Technology Development" contract (also includes Ge BIB detector development)
- Customer: NASA Jet Propulsion Laboratory Dr. Virendra Sarohia
- Task Start: 6/13/96
- Objective: Demonstrate FPA's for PF requirements
- Approach: Extend current BIB FPA technology
 - Vary Si: As BIB layer design. Evaluate Si: Ga
 - Tailor circuit designs and/or cryo Si readouts

Dark Current Reduction

Modify Si:As material design

- Reduce donor concentration (N_D) from nominal $8x10^{17}$ cm⁻³
- Increase blocking layer (BL) thickness from nominal 3 µm
- Use growth methods for lowest available acceptor background N_A

Evaluate Si:Ga

- Lower _{cut-off} (OK for PF), operates warmer for given I_{dark}
- Material quality and detector process not yet demonstrated

Progress

- Characterization data taken from WIRE/SIRTF, other devices
- Parameters for improved new material defined using BIB model
- New material grown at LSRL near design targets
- Device fabrication begun
- LSRL to provide Si:Ga material for evaluation on this project

Calculations for PF Epitaxy Split A

Calculations for PF Epitaxy Split B

Expected Dark Current Improvement

Lower donor doping effect

- Reduced dark current vs temp
- Modest improvement over WIRE
- Projected 1-e level is above 7 K

Thicker blocking layers effect

- Expect reduced leakage
- Achieve 1-e/s level
- WIRE leakage ~10 e/s

Reduced acceptor background

- Should allow lower-bias operation
- Still good radiometric performance

Read Noise Reduction

- Analyze feasibility of extending present cryogenic silicon BIB FPA readout designs/technologies
 - Bulk CMOS
 - Silicon on Insulator
 - Including in-cell gain
 - Power consumption issues
 - Alternate technologies: Ge JFET
- Progress
 - Passive input cells extensions considered, ~8 e
 achievable only if multiple sampling allowed
 - Active in-cell components will be needed for 1-e goal

Conclusion and Plans

- Spin-off from NASA/JPL Planet Finder detector development at Boeing RTC should benefit NGST Mid-IR detector development
 - Comparable detector dark current requirements
 - Overlap in readout development too, but needs are different
 - NGST: large arrays, read noise <15 e/read, passive circuits possible
 - PF: goal <1 e, active circuits required; OK for small arrays
- First detectors directed toward PF requirements now in processing
- Test results will guide design of improved detectors for fab next year.
- PF readout requirements being studied
- Readout design in next program phase, to begin later this year
- First readouts and FPA's next year
- Will seek demonstration vehicles

